首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2926篇
  免费   234篇
  国内免费   1篇
  2021年   86篇
  2020年   41篇
  2019年   54篇
  2018年   66篇
  2017年   51篇
  2016年   79篇
  2015年   137篇
  2014年   173篇
  2013年   206篇
  2012年   234篇
  2011年   208篇
  2010年   146篇
  2009年   113篇
  2008年   163篇
  2007年   138篇
  2006年   153篇
  2005年   121篇
  2004年   119篇
  2003年   116篇
  2002年   104篇
  2001年   33篇
  2000年   26篇
  1999年   27篇
  1998年   23篇
  1997年   15篇
  1996年   16篇
  1995年   13篇
  1994年   19篇
  1993年   16篇
  1992年   25篇
  1991年   23篇
  1990年   19篇
  1989年   18篇
  1988年   13篇
  1987年   23篇
  1986年   19篇
  1985年   16篇
  1984年   25篇
  1983年   13篇
  1982年   18篇
  1981年   12篇
  1979年   27篇
  1977年   11篇
  1976年   13篇
  1975年   18篇
  1974年   16篇
  1973年   16篇
  1972年   15篇
  1971年   14篇
  1970年   15篇
排序方式: 共有3161条查询结果,搜索用时 449 毫秒
101.
We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism.Nucleoside hydrolases or nucleoside N-ribohydrolases (NRHs; EC 3.2.2.-) are glycosidases that catalyze the cleavage of the N-glycosidic bond in nucleosides to enable the recycling of the nucleobases and Rib (Fig. 1A). The process by which nucleosides and nucleobases are recycled is also known as salvaging and is a way of conserving energy, which would otherwise be needed for the de novo synthesis of purine- and pyrimidine-containing compounds. During the salvage, bases and nucleosides can be converted into nucleoside monophosphates by the action of phosphoribosyltransferases and nucleoside kinases, respectively, and further phosphorylated into nucleoside diphosphates and triphosphates (Moffatt et al., 2002; Zrenner et al., 2006; Fig. 1B). Uridine kinase and uracil phosphoribosyl transferase are key enzymes in the pyrimidine-salvaging pathway in plants (Mainguet et al., 2009; Chen and Thelen, 2011). Adenine phosphoribosyltransferase and adenosine kinase (ADK) are important in purine salvaging (Moffatt and Somerville, 1988; Moffatt et al., 2002), and their mutants cause reductions in fertility or sterility, changes in transmethylation, and the formation of abnormal cell walls. In addition, both enzymes were also reported to play roles in cytokinin metabolism (Moffatt et al., 1991, 2000; von Schwartzenberg et al., 1998; Schoor et al., 2011). Cytokinins (N6-substituted adenine derivatives) are plant hormones that regulate cell division and numerous developmental events (Mok and Mok, 2001; Sakakibara, 2006). Cytokinin ribosides are considered to be transport forms and have little or no activity.Open in a separate windowFigure 1.A, Scheme of the reactions catalyzed by plant NRHs when using purine (inosine), pyrimidine (uridine), and cytokinin (iPR) ribosides as the substrates. B, Simplified schematic overview of cytokinin, purine, and pyrimidine metabolism in plants. The diagram is adapted from the work of Stasolla et al. (2003) and Zrenner et al. (2006) with modifications. The metabolic components shown are as follows: 1, cytokinin nucleotide phosphoribohydrolase; 2, adenine phosphoribosyltransferase; 3, adenosine kinase; 4, 5′-nucleotidase; 5, adenosine phosphorylase; 6, purine/pyrimidine nucleoside ribohydrolase; 7, cytokinin oxidase/dehydrogenase; 8, AMP deaminase; 9, hypoxanthine phosphoribosyltransferase; 10, inosine kinase; 11, inosine-guanosine phosphorylase; 12, IMP dehydrogenase; 13, xanthine dehydrogenase; 14, 5′-nucleotidase; 15, GMP synthase; 16, hypoxanthine-guanine phosphoribosyltransferase; 17, guanosine deaminase; 18, guanine deaminase; 19, guanosine kinase; 20, uracil phosphoribosyltransferase; 21, uridine cytidine kinase; 22, pyrimidine 5′-nucleotidase; 23, cytidine deaminase; 24, adenosine/adenine deaminase. CK, Cytokinin; CKR, cytokinin riboside; CKRMP, cytokinin riboside monophosphate.NRHs are metalloproteins first identified and characterized in parasitic protozoa such as Trypanosoma, Crithidia, and Leishmania species that rely on the import and salvage of nucleotide derivatives. They have since been characterized in other organisms such as bacteria, yeast, and insects (Versées and Steyaert, 2003) but never in mammals (Parkin et al., 1991). They have been divided into four classes based on their substrate specificity: nonspecific NRHs, which hydrolyze inosine and uridine (IU-NRHs; Parkin et al., 1991; Shi et al., 1999); purine-specific inosine/adenosine/guanosine NRHs (Parkin, 1996); the 6-oxopurine-specific guanosine/inosine NRHs (Estupiñán and Schramm, 1994); and the pyrimidine nucleoside-specific cytidine/uridine NRHs (CU-NRHs; Giabbai and Degano, 2004). All NRHs exhibit a stringent specificity for the Rib moiety and differ in their preferences regarding the nature of the nucleobase. Crystal structures are available for empty NRH or in complex with inhibitors from Crithidia fasciculata (CfNRH; Degano et al., 1998), Leishmania major (LmNRH; Shi et al., 1999), and Trypanosoma vivax (TvNRH; Versées et al., 2001, 2002). The structures of two CU-NRHs from Escherichia coli, namely YeiK (Iovane et al., 2008) and YbeK (rihA; Muzzolini et al., 2006; Garau et al., 2010), are also available. NRHs are believed to catalyze N-glycosidic bond cleavage by a direct displacement mechanism. An Asp from a conserved motif acts as a general base and abstracts a proton from a catalytic water molecule, which then attacks the C1′ atom of the Rib moiety of the nucleoside. Kinetic isotope-effect studies on CfNRH (Horenstein et al., 1991) showed that the substrate’s hydrolysis proceeds via an oxocarbenium ion-like transition state and is preceded by protonation at the N7 atom of the purine ring, which lowers the electron density on the purine ring and destabilizes the N-glycosidic bond. A conserved active-site His is a likely candidate for this role in IU-NRHs and CU-NRHs. In the transition state, the C1′-N9 glycosidic bond is almost 2 Å long, with the C1′ atom being sp2 hybridized while the C3′ atom adopts an exo-conformation, and the whole ribosyl moiety carries a substantial positive charge (Horenstein et al., 1991).Several NRH enzymes have been identified in plants, including a uridine-specific NRH from mung bean (Phaseolus radiatus; Achar and Vaidyanathan, 1967), an inosine-specific NRH (EC 3.2.2.2) and a guanosine-inosine-specific NRH, both from yellow lupine (Lupinus luteus; Guranowski, 1982; Szuwart et al., 2006), and an adenosine-specific NRH (EC 3.2.2.7) from coffee (Coffea arabica), barley (Hordeum vulgare), and wheat (Triticum aestivum; Guranowski and Schneider, 1977; Chen and Kristopeit, 1981; Campos et al., 2005). However, their amino acid sequences have not been reported so far. A detailed study of the NRH gene family from Arabidopsis (Arabidopsis thaliana) has recently been reported (Jung et al., 2009, 2011). The AtNRH1 enzyme exhibits highest hydrolase activity toward uridine and xanthosine. It can also hydrolyze the cytokinin riboside N6-(2-isopentenyl)adenosine (iPR), which suggests that it may also play a role in cytokinin homeostasis. However, Riegler et al. (2011) analyzed the phenotypes of homozygous nrh1 and nrh2 single mutants along with the homozygous double mutants and concluded that AtNRHs are probably unimportant in cytokinin metabolism.Here, we identify and characterize plant IU-NRHs from two different model organisms, Physcomitrella patens and maize (Zea mays), combining structural, enzymatic, and in planta functional approaches. The moss P. patens was chosen to represent the bryophytes, which can be regarded as being evolutionarily basal terrestrial plants, and is suitable for use in developmental and metabolic studies (Cove et al., 2006; von Schwartzenberg, 2009), while maize is an important model system for cereal crops. We report the crystal structures of NRH enzymes from the two plant species, PpNRH1 and ZmNRH3. Based on these structures, we performed site-directed mutagenesis experiments and kinetic analyses of point mutants of PpNRH1 in order to identify key residues involved in nucleobase interactions and catalysis. To analyze the physiological role of the PpNRHs, single knockout mutants were generated. NRH deficiency caused significant changes in the levels of purine, pyrimidine, and cytokinin metabolites relative to those seen in the wild type, illustrating the importance of these enzymes in nucleoside and cytokinin metabolism.  相似文献   
102.
Isolates from gardening waste compost and 38 culture collection microbes were grown on agar plates at pH 4.0 with the cutinase model substrate polycaprolactone as a carbon source. The strains showing polycaprolactone hydrolysis were cultivated in liquid at acidic pH and the cultivations were monitored by assaying the p-nitrophenyl butyrate esterase activities. Culture supernatants of four strains were analyzed for the hydrolysis of tritiated apple cutin at different pHs. Highest amounts of radioactive hydrolysis products were detected at pHs below 5. The hydrolysis of apple cutin by the culture supernatants at acidic pH was further confirmed by GC–MS analysis of the hydrolysis products. On the basis of screening, the acidic cutinase from Aspergillus niger CBS 513.88 was chosen for heterogeneous production in Pichia pastoris and for analysis of the effects of pH on activity and stability. The recombinant enzyme showed activity over a broad range of pHs with maximal activity between pH 5.0 and 6.5. Activity could be detected still at pH 3.5.  相似文献   
103.
104.
105.
Sperm competition and uncertainty of paternity hamper the evolution of male parental care. Thus, maternal care predominates in most taxa. What if males can, however, limit cuckoldry by guarding the eggs postmating? Here, we show that this provides a reason to reconsider an old and nowadays rather discredited hypothesis: that external fertilization is associated with male care because the parent who releases its gametes first can depart leaving the other in a “cruel bind,” having to care for the offspring. In our model, protection of paternity provides an additional incentive for the male to stay associated with its young. When we then assume that offspring survive better if guarded, paternity protection proves enough to kick‐start the evolution of male‐only parental care from a scenario with no care. This fits with data from fishes, where male‐only care is associated with external fertilization, whereas female‐only care almost always evolves after an initial transition to internal fertilization. Our model unifies disparate hypotheses regarding parental care roles and provides support for the idea that care roles can be influenced by sex differences in selection to be physically close to the offspring, including selection that is initially not based on offspring survival.  相似文献   
106.
Paternity protection and the acquisition of multiple mates select for different traits. The consensus from theoretical work is that mate‐guarding intensifies with an increasing male bias in the adult sex ratio (ASR). A male bias can thus lead to male monogamy if guarding takes up the entire male time budget. Given that either female‐ or male‐biased ASRs are possible, why is promiscuity clearly much more common than male monogamy? We address this question with two models, differing in whether males can assess temporal cues of female fertility. Our results confirm the importance of the ASR: guarding durations increase with decreasing female availability and increasing number of male competitors. However, several factors prevent the mating system from switching to male monogamy as soon as the ASR becomes male biased. Inefficient guarding, incomplete last male sperm precedence, any mechanism that allows sperm to fertilize eggs after the male's departure, and (in some cases) the unfeasibility of precopulatory guarding all help explain cases where promiscuity exists on its own or alongside temporally limited mate‐guarding. Shortening the window of fertilization shifts guarding time budgets from the postcopulatory to the precopulatory stage.  相似文献   
107.
108.
Birch (Betula) pollen seasons were examined in relation to meteorological conditions in Poznań (1996–2010). Birch pollen grains were collected using a volumetric spore trap. An alternate biennial cycle of birch pollen season intensity was noticed in Poznań. The main factors influencing birch pollen season intensity were average daily minimum temperatures during the second fortnight of May and the month of June one year before pollination as well as the intensity of the pollen season of the previous year. Most of the pollen grains are recorded during the first week of the season; the number of pollen grains recorded at this time is positively correlated with mean maximum temperature and negatively correlated with daily rainfall. The significant effect of rainfall in reducing the season pollen index was noticed only during weak pollen seasons (season pollen index <?mean). In addition, mean daily maximum temperature during the first two weeks of the birch pollen season markedly influences its duration. No significant trends in duration and intensity of the pollen season were recorded, however, a slight tendency towards early pollination was observed (?0.4 days/year, p?=?0.310).  相似文献   
109.
Like its British prototype (Biological Monitoring Working Party score system), the Polish benthic invertebrate-based BMWP-PL index is commonly regarded as an indicator of river water quality. This interpretation of the index has been verified in a study of the gravel-bed Bia?a River. Benthic macroinvertebrates were sampled at 10 sites and compared in one channelized and one unmanaged cross-section per site. The resulting taxa richness and BMWP-PL index scores were compared with water quality and physical habitat characteristics in the cross-sections. Channelized and unmanaged cross-sections clearly differed in their physical habitat conditions, and water quality characteristics mostly varied in the downstream direction. Particular cross-sections hosted between 3 and 26 invertebrate taxa, with the respective BMWP-PL scores indicating the water in the surveyed cross-sections varied between high and poor quality. However, the BMWP-PL scores were unrelated to physicochemical characteristics of the river water, which consistently pointed to high water quality. Instead, the scores were significantly related to several physical habitat variables, with the number of low-flow channels in a cross-section explaining the largest proportion of the variance in the index values. The relationship of the scores with the complexity of flow pattern in the river and a lack of their dependence on physicochemical water characteristics show that the BMWP-PL index should not be regarded as an indicator of water quality but rather as an indicator of the ecological status of rivers, dependent both on their hydromorphological and water-quality characteristics.  相似文献   
110.
Polyandry, by elevating sexual conflict and selecting for reduced male care relative to monandry, may exacerbate the cost of sex and thereby seriously impact population fitness. On the other hand, polyandry has a number of possible population-level benefits over monandry, such as increased sexual selection leading to faster adaptation and a reduced mutation load. Here, we review existing information on how female fitness evolves under polyandry and how this influences population dynamics. In balance, it is far from clear whether polyandry has a net positive or negative effect on female fitness, but we also stress that its effects on individuals may not have visible demographic consequences. In populations that produce many more offspring than can possibly survive and breed, offspring gained or lost as a result of polyandry may not affect population size. Such ecological ‘masking’ of changes in population fitness could hide a response that only manifests under adverse environmental conditions (e.g. anthropogenic change). Surprisingly few studies have attempted to link mating system variation to population dynamics, and in general we urge researchers to consider the ecological consequences of evolutionary processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号